Geolocation of GSM mobile devices, even if they do not want to be found

José Picó
jose@taddong.com
David Pérez
david@taddong.com

Copyright © 2013 Taddong S.L. All rights reserved.

Intro

Geolocation of mobile devices (MS)

- GSM Location Services LCS:
 - Network based
 - MS based
 - MS assisted

RRLP

Geolocation application, installed in the MS

OK, but could we...?

...locate any GSM mobile device,
even if we didn't have access to the
network,
and the device did not want to be
found?

Goals of this talk

Goals of this talk

1) Answer the following question:

¿How could we locate a mobile device that does not want to be found, without having acces to the network?

2) Illustrate the process of this research project

Design Constraints

Design constraints

- No access to the network (PLMN)
- All location services disabled in the target MS
- Known data about target MS:
 - approximate location (e.g. neighborhood)
 - IMEI or IMSI
- Target is static (or quasi-static)
- Solution must consist of a single system that can be operated in a standard vehicle

Goal of the system

Initial Design

Copyright © 2013 Taddong S.L.

"We will do it right: we will design the system with the whole software life cycle in mind from the very begining"

HA HA HA

System

 Portable fake GSM base station, capable of geolocating any GSM device within its reach.

Hardware

General schematics

Hardware: Power amplification

Hardware: antennas

2 Modes: Omnidirectional & Directional

- Omnidirectional mode
 - Locate the target, with some error margin (e.g. building)

Pinpoint the exact location of the target (e.g. window)

Software

- OpenBTS(*) 2.6, adding the following functionality:
 - GPS data acquisition
 - Triangulation based on power and timing data
 - Text-based (ncurses) user console

(*) http://wush.net/trac/rangepublic

Researching the Data Available for Triangulation

Investigation of the data sources provided by the OpenBTS+USRP base station that could be used to triangulate the position of the target MS

Data sources for triangulation

A GSM base station (BTS) provides useful data

- Power (absolute value) that the MS receives from the BTS
 - Used in GSM for handover procedures
- Power (relative) that the BTS receives from the MS
 - Used in GSM for dynamic control of MS power consumption
- Time delays
 - Used in GSM for the *timing advance* synchronization mechanism

Data sources for triangulation

Data source initial choice

- We figured time delays would probably be too imprecise:
 - A small error in the time measurement would translate into a huge error in distance estimation
- Thus, we opted for:
 - Use power measurements, mainly, and then,
 - Use time delay measurements only to make small adjustments (if needed and possible)

Power-based Triangulation

Power-based Triangulation

$$(x_{1}-cx_{1})^{2} + (y_{1}-cy_{1})^{2} = r_{1}^{2} \xrightarrow{en \ la \ interseccion} (x-cx_{1})^{2} + (y-cy_{1})^{2} = r_{1}^{2}$$

$$(x_{2}-cx_{2})^{2} + (y_{2}-cy_{2})^{2} = r_{2}^{2} \xrightarrow{(x-cx_{2})^{2} + (y-cy_{2})^{2}} = r_{2}^{2}$$

$$x^{2} \xrightarrow{-2cx_{1}} x + y^{2} \xrightarrow{-2cy_{1}} y + \underbrace{(cx_{1}^{2} + cy_{1}^{2} - r_{1}^{2})}_{C'} = 0$$

$$x^{2} \xrightarrow{-2cx_{2}} x + y^{2} \xrightarrow{-2cy_{2}} y + \underbrace{(cx_{2}^{2} + cy_{2}^{2} - r_{2}^{2})}_{C'} = 0$$

$$x^{2} + y^{2} + Ax + By + C = 0 (A - A')x + (B - B')y + (C - C') = 0$$

$$x = -\left(\frac{B - B'}{A - A'}\right)y - \left(\frac{C - C'}{A - A'}\right) = \left(\frac{B' - B}{A - A'}\right)y + \left(\frac{C' - C}{A - A'}\right)$$

$$\left(\frac{B'-B}{A-A'}\right)^{2}y^{2} + \left(\frac{C'-C}{A-A'}\right)^{2} + 2\left(\frac{B'-B}{A-A'}\right)\left(\frac{C'-C}{A-A'}\right)y + y^{2} + A\left(\frac{B'-B}{A-A'}\right)y + A\left(\frac{C'-C}{A-A'}\right) + By + C = 0$$

$$\left[1 + \left(\frac{B' - B}{A - A'}\right)^{2}\right] y^{2} + \left[2\left(\frac{B' - B}{A - A'}\right)\left(\frac{C' - C}{A - A'}\right) + A\left(\frac{B' - B}{A - A'}\right) + B\right] y + \left[\left(\frac{C' - C}{A - A'}\right)^{2} + A\left(\frac{C' - C}{A - A'}\right) + C\right]$$

$$y(sol1) = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $y(sol2) = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

NOTA: a debe ser distinto de 0

NOTA: en el caso especial que A-Ap=0, entonces:

$$y = \left(\frac{-C + C'}{B - B'}\right) \xrightarrow{\text{yields}} x^2 + \left(\frac{-C + C'}{B - B'}\right)^2 + Ax + B\left(\frac{-C + C'}{B - B'}\right) + C = 0$$

$$x^{2} + Ax + \left(\frac{-C + C'}{B - B'}\right)^{2} + B\left(\frac{-C + C'}{B - B'}\right) + C = 0 \xrightarrow{\text{yields}} \begin{cases} a = 1 \\ b = A \end{cases}$$
$$c = y^{2} + By + C$$

$$x(sol1) = \frac{-A + \sqrt{A^2 - 4c}}{2} \qquad x(sol2) = \frac{-A - \sqrt{A^2 - 4c}}{2}$$

Taddong

"This will be a piece of cake!"

Distance estimation based on power measurements

Different models exist

Path Loss between isotropic antennas in direct sight

$$L = 20 \log_{10} \left(\frac{4\pi d}{\lambda} \right)$$

Path Loss exponent models

$$PL = PL_0 + 10 \gamma \log_{10} \left(\frac{d}{d_0}\right) + X_G$$

$$L = 10 n \log_{10}(d) + C$$

Okumura-Hatta model

$$L_U$$

= 69.55 + 26.16 log f - 13.82 log h_B - C_H
+ (44.9 - 6.55 log h_B) log d

Distance estimation based on power measurements

Trying to adjust the models to our empirical data

Distance estimation based on power measurements

Trying to adjust the models to our empirical data

- Models depend heavily on the environment
- We could not find or build a model that would automatically adapt to any
- environment

 Power measurements

 WE DISCARDED POWER

 FOR TRIANGULATION

Time-based Triangulation

Distance estimation based on time delay measurements

Time delay measurements

 In GSM, the delay of the signal that arrives to a BTS, as used in the timing advance mechanism, is measured in modulation symbols

• 1 symbol = $3,69 \mu s$

• That means a resolution, in the estimation of the distance between MS and BTS, of:

ii 553,5 meters !!

Fortunately, we heard a voice...

OpenBTS measures and stores that time delay as a *float*, which would give a theoretical resolution of:
 1 meter!!

Time-based Triangulation

Distance estimation based on time delay measurements

Data properties

- Measurement errors are quite big (between 0,25 and 0,75 symbols).
- We found, empirically, that on top of that caused by the distance between MS and BTS, there is an additional delay, different for each device.
 - This delay is not big enough to affect GSM's timing advance mechanism, but it did render our triangulation calculations pretty much useless.

Obtaining an Acceptable Precission

based on time measurements

Adjusting the model

- We were forced to design algorithms to:
 - Predict/correct the errors in the time delay measurements
 - Predict/estimate the additional delays introduced by the different devices

Adjusting the model

- We were forced to design algorithms to:
 - Predict/correct the errors in the time delay measurements
 - Predict/estimate the additional delays introduced by the different devices

Field testing

Field testing = testing in fields of oranges ;-)

Field testing = testing in fields of oranges

Field testing = testing in fields of oranges

Field testing = testing in fields of oranges

Example of adjustment #1

- From:
 - triangulating every time we got 3 triangulation points
- To:
 - choose the best 3 triangulation points among the last 200 acquired

Example of adjustment #2

After Phase 1 of adjustments

 Precission was not enough yet ⁽³⁾

 Figure: where do these circles intersect?

Phase 2 of adjustments. Example.

- Dynamic correction of the additional delay, based on certain specific conditions. E.g.:
 - Negative radius
 - Particular combinations of circle intersections

After Phase 2 of adjustments.

 Figure: same test as before

 We needed to configure the system to work in a real scenario, and for that:

 We needed to impersonate the real network of the target device "This is going be a walk in the park, because we have already done this a hundred times!"

Symptoms

- No device attempted to register with our fake cell.
- The terminals didn't even see our fake cell as a neighbour cell.
- If we repeated the tests using a commercial BTS, terminals registered normally.

Why, why, why???!!!

- Hypothesis #1: Not enough power
 - Discarded: when really close, we were frying the terminal
- Hipothesis #2: Something wrong with the information in our beacon?
 - We captured beacon signals from the BTS
 - We modified OpenBTS so that our be bit equal to that of the commercial BT
 - Yet, the problem remained! ☺

Hypothesis #3: precission of the clock

- Check:
 - We measured the frequency deviation of our USRP, and it turned out to be 900 Hz, while GSM allows only 45 Hz
- Workaround:
 - We modified OpenBTS to include an offset in syntonization
- Result:
 - Terminals registered correctly!!!

"Finally, solved!"

The workaround was not good enough

Terminals got registered, but...

 Time delay measurements got totally distorted, and made the system diverge ⁽³⁾

Final solution: replace clock with another more precise (clocktammer)

Range

Range: first tests

 Once registered with our BTS, the MS remained in it up to a distance of 1,8 km in open field. Not bad.

 However, the maximum distance at which an MS registered with us, turned out to

be...

ii 15 meters!!

Conditions for registration

P_{Attacker} > P_{ServingCell}

```
SAMSUNG
                3□3 ¾ 1111 □ 10:40
ServiceMode
No. of GSM Neighbour Cells: 6
Arfcn_Num; 5, rxlev: 34
Arfcn_Num; 2, rxlev: 21
Arfcn_Num; 3, rxlev: 15
Arfcn_Num; 547, rxlev: 7
Arfcn_Num; 8, rxlev: 0
Arfcn_Num; 14, rxlev: 0
```


How much power did we need?

Measuring the power of a real network

The terminals reported the maximum measurable power (saturation level) even at a distance of 2 Km

How much power did we need?

Real network vs. our fake BTS

Problem

Solution

Solution to the registration range problem

Technical explanation

- GSM defines a mechanism to prioritize some cells over others (CRO - Cell Reselection Offset)
- Using that mechanism in our beacon, if we got in the list of the 6 most powerful neighbour cells, we won.
- It was not implemented in OpenBTS 2.6. We had to add emision of SI3 Rest Octets.

Solution to the registration range problem

Example of our new registration range

• The idea was to have a pointer that could, at close range, tell us where exactly the target was.

 The idea was to have a pointer that could, at close range, tell us where exactly the target was.

"This won't take us longer than 2 hours to implement!"

- For this mode, we decided to use the power received by the BTS:
 - the more power,the better wewould be pointingat the target

Problem & Solution

Problem:

The measures were very oscillating and unstable.

Cause:

 GSM constantly regulates the power emitted by the terminal, so the MS always transmits at the minimum power that will allow it to reach the BTS.

Solution:

 We modified the code to deactivate this power control mechanism when the system was in directional mode.

Hardware setup

Hardware setup

© 2013 Taddong S.L. All rights reserved

Precission in open field environment

Precission in urban environment

Demo (videos)

Omnidirectional mode

iPad console

Directional mode

Future Work

- Extend system functionality to 3G
- Improve algorithms to obtain a better position accuracy
- Add functionality to the remote (iPhone) console

Thank you!

Taddong

www.taddong.com @taddong